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Abstract

This study considers the effect of an industry’s network topology on its systemic risk contri-

bution to the stock market using data from the CSI 300 two-tier industry indices from the Chi-

nese stock market. We first measure industry’s conditional-value-at-risk (CoVaR) and the

systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The net-

work of the stock industry is established based on dynamic conditional correlations with the

minimum spanning tree. Then, we investigate the connection characteristics and topology

of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel

data to analyze the relationship between network topology of the stock industry and the

industry’s systemic risk contribution. The results show that the systemic risk contribution of

small-scale industries such as real estate, food and beverage, software services, and dura-

ble goods and clothing, is higher than that of large-scale industries, such as banking, insur-

ance and energy. Industries with large betweenness centrality, closeness centrality, and

clustering coefficient and small node occupancy layer are associated with greater systemic

risk contribution. In addition, further analysis using a threshold model confirms that the

results are robust.

Introduction and literature review

After the financial crisis in 2008, the stability of the financial system has gradually become the

focus of the industry, academia and regulators. Kaufman and Scott [1] define systemic risk as

"the probability of collapse of individual or component of a group resulting in the risk of an

overall system or the probability of loss of the system, and the collapse of an overall system

arises from the domino effect of a single individual which has suffered the risk." The Interna-

tional Monetary Fund, the Financial Stability Board and the Bank for International Settlements

(BIS) [2] state that systemic risk refers to a type of risk that may damage the financial system

partially or totally and create a wide range of disturbances in financial services and have seri-

ous impact on the real economy.

The accurate measurement of a system’s financial risk and the identification of components

that affect the entire financial system have played an important roles in the identification of
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systemic risk. Therefore, the academic community is mainly focused on the measurement of

systemic risk. Bisias et al. [3] documented a total of six categories, including more than thirty

types of systemic risk measurement, among which the most common type is the cross-sec-

tional method. Acharya et al. [4] developed two new systemic risk measurement methods, sys-

temic risk loss (SES) and marginal expectation loss (MES), based on expected shortfall. On this

basis, Brownlees and Engle [5] proposed the SRISK index and developed the DCC-GARCH

model to estimate the marginal expected loss. Adrian and Brunnermeier [6] proposed a

CoVaR method based on the VaR method; they also defined CoVaR and estimated it using

quantile regression. CoVaR is a strong operational method that is used to study the risk situa-

tion of financial institutions or financial markets when they suffer financial risks. The author

found that CoVaR was related to the company’s leverage, maturities and asset size. Lopez-Espi-

nosa et al. [7] used the CoVaR approach to identify the main factors behind systemic risk in a

set of large international banks. They found that short-term wholesale funding is a key deter-

minant in triggering systemic risk episodes. Reboredo et al. [8] studied systemic risk in Euro-

pean sovereign debt markets before and after the onset of the Greek debt crisis; they took

CoVaR, characterized and computed using copulas, as a systemic risk measure. Huang et al.

[9] studied the systemic risk of a group of major financial institutions and proposed a measure

of systemic risk based on the price of insurance against financial distress. This indicator is

determined by the bank’s default probability, asset relevance and macroeconomic variables.

Financial markets are a typical complex systems. The major players of the financial system

perform risk transmission through their financial correlations. Network theory is of interest to

various components of the financial world, e.g., description of the systemic structure and anal-

ysis and evaluation of penetration or contagion effects [10]. Therefore, many scholars have

studied financial networks and risk transmission by concentrating on the interbank network

and empirical research of risk transmission. These networks, which include interbank borrow-

ing, payment networks, counterparty exposure in credit default swaps, and trade credits

between companies, employ empirical and simulation techniques to assess the propagation of

institution failures [11–15]. The empirical study of Allen and Gale [16] showed that a fully

structured network is more stable than an incomplete structural network. Lubloy [17] found

that the structure of the interbank network has a significant impact on the spread of bank

defaults in the Hungarian banking industry. Empirical research has shown that the node

degree of the bank network exhibits a power-law distribution for the US FedWire system, the

Austrian interbank market, the Brazilian banking system, the UK and the Italian market

[15,18,19]. The size of the initial collapsed bank is the dominant factor influencing transmis-

sion, but the characteristics of the interbank network are the most important factors affecting

the extent of risk propagation [20]. However, the literature on network analysis only concen-

trates on the overall network structure’s effect on systemic risk; the relationship between the

local network structure and systemic risk contribution is neglected [21]. Many scholars have

evaluated the systemic risk by using the cross-correlation between financial institutions to

build a financial network to study the basic topology characteristics and the inherent hierarchi-

cal structure of the network [22–28]. The results illustrate that the interconnectedness of stock

return correlation networks has increased and correlation networks more accurately represent

systemic risk than do physical networks. Moreover, the structure of correlation networks is

vulnerable to macroeconomic shocks. Huang et al. [29] studied the effects of financial institu-

tions’ topology in the financial network on their systemic risk contribution and found that

they were correlated. However, the measurement of systemic risk and the construction of the

stock network in the above literature are conducted from the viewpoint of financial institu-

tions. There are also many studies on the evolution of dynamic correlations among industry

indices from the perspective of the industries in the stock market. A common finding is that
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the topology of the industry index correlation network changes during a crisis [30, 31]; there-

fore, it is natural to investigate systemic risk from the perspective of the industry index net-

work in the stock market. Uechi et al. [32] presented a new measure (SDR) to quantify the

evolution of the economic sector’s activity reflected in financial markets. They found that an

increase in SDR indicated increased in systemic risk. Raddant and Kenett [33] analyzed the

dependencies among nearly 4000 stocks from15 countries and found that the energy, raw

materials and financial sectors played important roles in connecting markets and that changes

in the energy and raw materials markets affected the correlations among stock industries.

However, few studies have concentrated on measuring systemic risk contribution from an

industry’s perspective, or on establishment of an industry index network. Researchers have

failed to explore the relationship among systemic risk contribution in industry and the local

structure of the industry’s network. On one hand, the flow of information can effectively

explain the linkage effect of a stock [34], and information that affects stock market volatility

includes common information and private information [35]. The emergence of common

information including macroeconomic fundamentals, can lead to simultaneous fluctuations in

the stock indices of different industries. When private information appears, cross-industry

asset transfer behavior also contributes to correlation among industries. On the other hand,

there are associations between different industries in the economy, which are reflected by the

industry index correlation effect [33]. The impact of any industry is transmitted through the

index correlation between industries. Therefore, it is necessary to measure the contribution to

systemic risk’s from the perspective of the stock industry and to establish an industry index

network to explore the relationship between the industry’s contribution to systemic risk and

the local network structure of the industry.

When constructing networks, in much of the literature, the vertex of the stock network is

the stock, and the edge between the vertexes is the correlation of the stock price [36–42]. A

complete stock network, which contains redundant information is usually very large; thus, spe-

cial filtering methods are used to reduce complexity, such as threshold, minimum spanning

tree (MST) [38–41] and plane maximum filter graph (PMFG) [43]. Kenett [44] introduced a

partial correlation network to detect the prominent role of financial stocks in controlling the

correlation structure of the market. To understand the functions of a network, one must study

its dynamic properties [10]. The rolling correlation coefficient (RC) method is used to obtain

the correlation coefficient matrix [45–47] in many studies analyzing dynamic networks. How-

ever, on one hand, using the rolling window technique to construct stock networks may pro-

duce different results due to researchers’ specific selection of parameters, such as the length

and drift of the estimation window, which undermines the objectivity and reasonability of the

research conclusions [26]. On the other hand, due to the volatility of stock market linkage, the

estimations produced from the data may have errors due to heteroscedasticity and variance

clustering. Therefore, RC is generally not considered suitable for high-frequency financial

data. Many scholars employ other methods to estimate the dynamic correlation coefficient,

such as Trancoso [48], who used the dynamic correlation estimated by BEKK model to con-

struct a dynamic global economic network. Lyocsa et al. [49] who estimated the dynamic con-

ditional correlation using DCC MV-GARCH model [50,51];and Wang et al. [52], who studied

the dynamic correlation structure of a foreign exchange market by adopting a time-varying

copula and MST method. The empirical results show that the market dynamics are better pre-

served by DCC.

The current research on stock market networks is concentrated on developed economies.

Research on the stock market networks of emerging economies is rare and mainly focuses on

interindustry dependencies rather than the dependent relationships of financial institutions.

Thus, the gap in the existing literature can be filled by studying the relationship between the
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network topology and the contribution of systemic risk from the perspective of the stock

industry in China. This study measures CoVaR and ΔCoVaR using the time-varying t-copula

function using data from the CSI 300 two-tier industry indices on the Chinese stock market.

Then, the stock industry network and its MSTs are constructed using the DCC. We then inves-

tigate the nature of the connection and the topology of the network by estimating the local net-

work structure of each industry, including the node strength, betweenness centrality, closeness

centrality, node occupation layer and clustering coefficient. Finally, we analyze the relationship

between the network topology and the industry’s systemic risk contribution to the stock indus-

try using seemingly unrelated regression estimation (SUR) of panel data.

The remainder of this paper is organized as follows. Section 2 discusses the applied method-

ology; the main empirical results and analysis are presented in Section 3. Finally, Section 4

summarizes and concludes the paper.

Model introduction

CoVaR measurement

VaR is the dominant method in traditional measurments of market risk. VaR represents the

maximum possible loss of an asset or portfolio at a particular time in the future based on a cer-

tain probability level, and it is satisfied by:

Prðxi � VaRi
qÞ ¼ 1 � q ð1Þ

Adrian and Brunnermeier [6] established a risk-taking model on the basis of the VaR model

called CoVaR, which considers the relationship of risk spillovers between financial institutions

and financial sectors. CoVaR represents the maximum possible loss of other assets or portfolios

when a certain asset is equal to VaR at a future time at a certain probability level. Thus, when

the loss value of individual i is VaR, the CoVaR of j at confidence level 1-q is as follows:

PrðXi � CoVaRj=i
q =Xi ¼ VaRi

qÞ ¼ q ð2Þ

In contrast with the unconditional value VaRj
q, CoVaR considers the spillover and transmis-

sion of financial market risk and can reflect an increase in individual relevance during a crisis,

which is an improvement over the traditional VaR model. Similarly, the marginal contribution

of component i to systemic risk is the difference between the conditional risk and the uncondi-

tional risk of the financial system when the maximum possible loss is incurred by component

i. This marginal contribution can be expressed as follows:

DCoVaRt
s=i ¼ CoVaR

s=Li¼VaRi
q

q � CoVaRs=Li¼VaRi
50%

q ð3Þ

CoVaR estimation

As a marginal distribution of each index return, the specific form of the model is given in for-

mulas (4)-(6), where td is the t distribution with degrees of freedom d.

Rt ¼ mþ fRt� 1 þ εtst ð4Þ

ffiffiffiffiffiffiffiffiffiffiffi
d

d � 2

r

gεt � i:idtd ð5Þ

s2

t ¼ oþ Aε2

t� 1
s2

t� 1
þ Bs2

t� 1
ð6Þ
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According to Roncalli [53], the t-copula function Ct
r;dðu; vÞ can be expressed as follows:

Ct
r;dðu; vÞ ¼

Z u

0

tdþ1

d þ 1

d þ ½t� 1
d ðuÞ�

2

 !1
2 t� 1

d ðdÞ� rt� 1
d ðtÞffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

0

@

1

Adt ð7Þ

According to Hawka [54], CoVaRs
a

can be expressed as follows:

gðv; uÞ ¼
@Ct

r;dðu; vÞ
@u

¼ tdþ1

d þ 1

d þ ½t� 1
d ðuÞ�

2

 !1
2 t� 1

d ðdÞ� rt� 1
d ðtÞffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

0

@

1

A ð8Þ

CoVaRs
a
¼ F � 1

s td rt� 1

d ðbÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2Þðd þ ½t� 1
d ðbÞ�

2
Þ

d þ 1
t� 1

dþ1ðaÞ

s0

@

1

A

0

@

1

A ð9Þ

where Fs is the marginal distribution of system losses, ρt represents the dynamic correlation

coefficient, which evolves through time as in the DCC(1,1)model of Engle [51], and ρt satisfies

the following equation:

Qt ¼ ð1� a� bÞg �Q þ aεt� 1gε
0

t� 1
þ bgQt� 1 ð10Þ

rt ¼
~Q � 1

t Qt
~Q � 1

t ð11Þ

where ρt is the DCC coefficient and α and β are non-negative constants that satisfy α + β< 1.

Qt ¼
qii

t qij
t

qji
t qjj

t

" #

, ~Qt ¼
0

ffiffiffiffiffi

qij
t

q

ffiffiffiffiffi

qji
t

q

0

2

6
6
4

3

7
7
5 is the conditional standard deviation matrix, �Q is the

residual unconditional variance matrix, and qij
t is the covariance between variables Ri

t and Rj
t at

time t.

Construction of the dynamic network

This paper takes the industry index as the network node, and various industry nodes are con-

nected by the weighted edge of the return rate of the dynamic correlation coefficients. We use

the DCC method to compute all t period bivariate DCCs and obtain the N × N correlation

matrix CDCCt. After performing these procedures, we transform the correlation coefficients

to distance metrics between each pair of CSI 300 two-tier industry indices as in Mategna [55],

i.e., dt
i:j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rt

i:j

q
Þ, (-1� ρt� 1, 0 � dt

i:j � 2). Then, the N×N distance matrix is formed.

Because there is substantial noise in the initial correlated network, only some edges contain

useful and relevant information. Therefore, it is necessary to filter out the excess edges from

the initial connected network to determine the true sense of the network. We utilize Kruskal’s

algorithm to filter the network information and to construct the minimum spanning tree

(MSTt) corresponding to Gt.

Network topology

Node strength. The node strength is defined as the sum of the correlation coefficients of

the node i with all other nodes to which it is linked; for example, where the node strength of
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node i is defined as:

St
i ¼

X
rt

i:j ð12Þ

The node strength represent the effect of a node on the stock price of other nodes in the net-

work. The greater node i’s strength is, the greater the node’s impact on other nodes in the

network.

Node betweenness centrality. Node betweenness centrality is defined as the number of

geodesics (shortest paths) going through a vertex and is a measure of one node’s importance as

an intermediate element between other nodes in the network. Node betweenness centrality is

calculated using the following formula:

Bt
i ¼

X

j<k

gi
j;k=gj;k ð13Þ

where gi
j;k represents the number of shortest geodesic paths traversing i between nodes j and k,

gj,k represents the number of short paths between the j and k. An industry with high between-

ness centrality would have an important effect on other industries since it can stop or distort

the information that passes through i

Node closeness centrality. Closeness centrality represents the sum of the distances

between a node and all other nodes in the graph. The closeness centrality of node i is defined

as:

Ft
i ¼

X

j2G:j6¼i

li:j ð14Þ

where Ii.j is the shortest distance between industry i and j. Closeness centrality is an indicator

of the importance of nodes to the entire network, and an industry with low closeness centrality

is less dependent on other intermediary industries to receive messages. In our work, this mea-

sure is related to the industry’s capacity to propagate transmission.

Node occupation layer. C is the node with the largest degree in the smallest spanning

tree. The node occupancy layer of point i, the minimum distance from i to c, is defined as lt
i;c.

The node occupancy layer of c is 0, which reflects the extent of closeness to the central position

in the network. The farther from the central position an industry index is, the weaker it is in

information resources, power, prestige and influence.

Node clustering coefficient. The original network Gt with edge weights, equal to the

DCC can be used to calculate the node clustering coefficient. The clustering coefficient of

node i is defined as:

Ct
i ¼

1

NðN� 1Þ

X

j;k

ð rt
i;j

�
�
�
�� rt

i;k

�
�
�
�� rt

j;k

�
�
�
�Þ

1
3; i 6¼ j; i 6¼ k; j 6¼ k: ð15Þ

Empirical research

Selected data

The CSI 300 index and its two-tier index were selected as the research sample. CSI 300 repre-

sents the stock market system, and the CSI 300 two-tier industry indices, including 17 indus-

tries, such as banks, comprehensive finance and capital goods, represent the components of

the stock market system. The CSI 300 index, which was jointly issued by the Shanghai and

Shenzhen Stock Exchanges on April 8, 2005, is compiled from a sample of 300 A shares from

the Shanghai and Shenzhen stock markets. The CSI index covers approximately 60% of the

market value of the Shanghai and Shenzhen markets, with good market representation. The
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following experimental data were acquired from WIND information database for the period

between January 1, 2007 and September 30, 2016 (2372 consecutive trading days in total):

daily closing prices of the CSI 300 index and its two-tier industry indices, quarterly financial

data of the companies included in the CSI 300 secondary industry index, GDP growth rate,

CPI growth rate, interbank overnight rate, dollar against the RMB exchange rate and other

macroeconomic data. The list of two-tier industries and their codes and respective symbols are

presented in Table in S1 Table.

DCC-copula estimation

We first calculate the DCCs between the 17 industry indices returns, and the DCCs between the

returns of the industry indices and the CSI 300 index, resulting in 153 pairs of return sequences.

The DCCs are calculated as follows: (1) The running unit root test, Ljung-Box autocorrelation

test and ARCH effect test is performed for each industry index return and the CSI 300 index

return. The results are shown in Table 1. (2) According to the fitting effect, the AR (m) -GARCH

(p, q) -t model is used to fit the marginal distribution of each return and can be used to calculate

the standard residual sequence. (3) The time-varying copula function is used to fit the standard

residual sequence of each pair of returns, and the DCCs are calculated.

Due to limited space, a list of the DCCs between the ENG and the CSI 300 index return

sequence is given as an example to illustrate the overall measurement process. Table 1 presents

the results of the ADF, Ljung-Box and ARCH effect test on the ENG and CSI 300 index return

sequence. The small p-value indicates that the index returns are stable. The p-value of Ljung-

Box test of the two series returns is less than 0.05; therefore, the null hypothesis is rejected at

the 5% significance level. The p-values of the ARCH effect of the two series of return sequences

are very small. The data shows heteroscedasticity with a significant ARCH effect. Therefore,

we adopt the ARMA and GARCH models to perform the estimation; the estimates for the

ENG are as follows:

rt
i ¼ 0:0506þ 0:0117rt� 1

i þ ε
t
i

ðst
iÞ

2
¼ 0:0169þ 0:0558 ðεt� 1

i Þ
2
þ 0:9422 ðst� 1

i Þ
2

We performed an autocorrelation test and ARCH effect test for the residual sequence to

ensure the validity of this model to describe the heteroscedasticity and autocorrelation of the

ENG. The t-value of the autocorrelation test of ENG is 12.3493, and the p-value is 0.0771, indi-

cating that the sequence has no autocorrelation. The p-value of the ARCH effect test of 0.9991

indicates that the ARCH effect does not exist. Therefore, the AR-GARCH model can accu-

rately describe the autocorrelation and conditional heteroscedasticity of the original return

sequence. The GARCH regression results of the CSI 300 index are as follows:

rt
i ¼ � 0:0242� 0:0082rt� 1

i þ ε
t
i

Table 1. ADF, Ljung-Box and ARCH effect test results for the ENG (CSI 300 Energy index) and the CSI 300 index returns.

ADF Q(5) Q(10) Q2(5) Q2(10)

ENG -47.5403 42.207 51.857 289.429 506.656

(0.000) (0.000) (0.000) (0.000) (0.000)

CSI 300 -47.308 18.782 32.517 69.799 79.906

(0.000) (0.002) (0.000) (0.000) (0.000)

https://doi.org/10.1371/journal.pone.0180382.t001
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ðst
iÞ

2
¼ 0:0192þ 0:0709 ðεt� 1

i Þ
2
þ 0:9291 ðst� 1

i Þ
2

The results of the autocorrelation and ARCH effect tests show that the model fit is good.

Then, we use the standard deviation DDC model to obtain α = 0.04805 and β = 0.9157. As

shown in Fig 1, the maximum DCC between the ENG and CSI 300 index is 0.9115, the mini-

mum is 0.3287, the mean is 0.7922, and the variance is 0.0783. The skewness and kurtosis are

-1.7230 and 7.2698, respectively, representing the characteristics of the peak and the thick tail

of graph. We then calculate the correlation coefficient of the autocorrelation function (ACF);

from 1 to 20 days, ACF is positive with a 1 to 20 day lag at the 95% confidence level. In the

autocorrelation test, Q (5) = 9229.3, Q (10) = 15434, and the p-value is zero; thus, the DCC has

significant positive autocorrelation.

CoVaR estimation

In this section, the DCCs between the CSI 300 index and CSI two-tier industry indices

are utilized to measure the systemic risk contributions of the industries. The ENG is

taken as an example, and the evaluation of time-varying systemic risk contribution at the

95% confidence level is shown in Fig 2. A smaller ΔCoVaR indicates larger systemic risk

contribution of the industry. The maximum value is -1.1226, and the minimum value is

-6.2235.

The value and standard deviation are -2.7782 and 1.0978, respectively. The standard

deviation of the systemic risk contribution in each year from 2007 to 2016 is 0.6722, 0.2718,

0.9797, 0.3553, 0.2824, 0.3225, 0.3490, 0.4711, 1.1219, and 1.0015. Due to the financial crisis,

ΔCoVaR fluctuates drastically from 2007 to 2009, and the volatility of ΔCoVaR has since

decreased, with an upward trend from 2010 to 2014. Furthermore, due to the stock market

crash, ΔCoVaR has fluctuated more drastically in 2015 and 2016. We also estimate the

ACF of the correlation coefficient, and the results show that the ACF value is positive, with

1 to 40 days lag at the 5% level. The autocorrelation test gives Q (5) = 11108.3171, Q (10) =

21107.2639, indicating significant positive autocorrelation and that the systemic risk contri-

bution of the ENG is stable and predictable. The systemic risk contribution of the ENG

is increasing. The average ΔCoVaR of each CSI 300 two-tier industry index is ranked in

ascending order in Table 2. The smaller an industry’s ΔCoVaR is, the greater its systemic

risk contribution. The top three industries are CRE, FBA, and DAP, and the bottom three

are CBI, INS and ENG. The systemic risk contribution difference between CRE, which

ranks first, and ENG, which ranks last, is -1.7988.

Fig 1. The DCCs between the ENG and CSI 300 index returns from January 2007 to June 2016.

https://doi.org/10.1371/journal.pone.0180382.g001
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Network construction and network topology

After calculating all the bivariate DCCs, we construct the network Gt and the corresponding

MSTt in period t. The MST of the first and last days of the sample period are shown in Fig 3,

which shows a significant change in the relative position of the node in the two networks.

Thus, the network structure has also changed during this period. For example, at t = 1, the

node with the largest degree is CAG, and the top three nodes are CAG, ITH, and DFI. At

t = 2372, the top three nodes are CAG, ITF and CMA. The evolution of the topology of the

ENG in the dynamic network changes is shown in Fig 4. The ENG’s node degree ranges from0

to 4, its node strength ranges from 6.4063 to 13.4470, its node betweenness centrality ranges

from 0 to 228, its node closeness centrality ranges from 15.4338 to 83.8775, its node occupation

layer ranges from 0 to 7.1972 and node clustering coefficient ranges from 0.3860 to 0.7492.

The effect of network topology on system risk contribution

A change in the network topology of the stock industry indicates that the information trans-

mission relationship between industries and the industry association and among economic

industries may also change, which may lead to a change in the systemic risk contribution of

Fig 2. The systemic risk contribution of ENG from 2007 to 2016.

https://doi.org/10.1371/journal.pone.0180382.g002

Table 2. Industry ranking based on systemic risk contributions.

Ranking Code Industry ΔCoVaR

1 CRE 300 Real Estate -4.5771

2 FBA 300 Food&Beverage -4.1272

3 DAP 300 Durables&Apparel -3.8601

4 ITF 300 IT Software -3.6565

5 UTL 300 Utilities -3.5450

6 ITH 300 IT Hardware -3.5032

7 CAG 300 Capital Goods -3.4832

8 RET 300 Retail -3.4324

9 CTR 300 Trans -3.4126

10 MEA 300 Media -3.3974

11 CMA 300 Materials -3.2336

12 ACP 300 Auto&Component -3.1751

13 DFI 300 Diversified financials -3.1250

14 PBT 300 Pharma& Biotech -2.8640

15 CBI 300 Banks -2.8293

16 INS 300 Insurance -2.7964

17 ENG 300 Energy -2.7782

https://doi.org/10.1371/journal.pone.0180382.t002
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the industry to the stock market. In this section, we investigate the effects of network topology

on systemic risk using SUR of the panel data. Previous studies have shown that asset size, lever-

age, and return on assets have substantial impact on systemic risk, therefore, the logarithms of

the industry assets, leverage, and asset returns are used as the additional control variables. The

data are obtained from sub-sector quarterly financial reports, semi-annual reports and annual

reports. The financial data of each industry stock are aggregated to obtain the industries’ over-

all financial data and the required agent index data. Since macroeconomic activity affects the

systemic risk contributions of the industries in the stock market and the stock industry net-

work structure, it is included to control the main impact of the following economic activities:

GDP growth rate, CPI growth rate, bank overnight lending rate, and US dollar to RMB

exchange rate. We convert the quarterly financial data, quarterly GDP growth rate data and

monthly CPI growth rate data, into daily data to match the timescale of other variables.

Fig 3. MSTs of the CSI 300 two-tier industry index network on January 4, 2007 (a) and September 30, 2016

(b).

https://doi.org/10.1371/journal.pone.0180382.g003
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We initially conduct stationary tests on these variables. The results in Table 3 indicate that

the variables are stationary variables. Then, the Hausman test is applied to determine whether

the model has random effects or fixed effects. The null hypothesis is that the random effect

model should be established as follows:

DCoVaRt
s=i ¼ aþ xt

i bþ vi þ ut
i

where xt
i ¼ ðS

t
i ;B

t
i ; F

t
i ; l

t
i ;C

t
i ; lnAssetst

i ; leveraget
i ;ROAt

i ;GDPgrt;CPIgrt;Rt;ExtÞ, α is a constant

part of the intercept term, vi is a random part of the intercept term, β is the12×1 coefficient

matrix, i = 1,2,. . .,N, and t = 1,2,. . .,T. The Hausman test statistic is 19.80, with a p-value of

0.01; the null hypothesis is rejected and a fixed effects model is established. Next, constant

coefficient, variable intercept and variable coefficient tests are conducted. The sum of residual

squares in the variable coefficient model, variable intercept model and fixed parameter model

is S1 = 39,465.4883, S2 = 55,695.4629, S3 = 64,338.4884. According to Cheng [56], since

N = 17, T = 2372, and k = 12, F1 = 79.2892 and F2 = 121.5134 at 95% confidence level, with

F1α = 1.1741 and F2α = 1.1671. F1 and F2 are larger than their corresponding critical values;

therefore, the variable coefficient model is chosen. The model is shown below:

DCoVaRt
s=i ¼ ai þ xibi þ ui

where i = 1,2,. . .,N, DCoVaRt
s=i is a T × 1 vector of independent variables, xi is the T × k

Fig 4. The evolution of the topology of the ENG. (a) shows the node degree of the ENG. (b) shows the node strength of the ENG. (c) shows the

betweenness centrality of the ENG. (d) shows the closeness centrality of the ENG. (e) shows the node occupation layer of the ENG. (f) shows the clustering

coefficient of the ENG.

https://doi.org/10.1371/journal.pone.0180382.g004

Does network topology influence systemic risk contribution?

PLOS ONE | https://doi.org/10.1371/journal.pone.0180382 July 6, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0180382.g004
https://doi.org/10.1371/journal.pone.0180382


www.manaraa.com

explanatory variable matrix, αi is the intercept term, which varies by industry, βi is the k × 1
coefficient matrix, which varies by industry, and ui is the residual matrix. The Breusch-Pagan

LM statistic for the variable coefficient model is 78,263.684 with a p value of 0, and the null

hypothesis, which is not relevant to the same period, can be rejected. Therefore, SUR is

adopted, and the regression results are shown in Table 4.

The number of industries whose corresponding node strength S has a significant negative

(positive) effect on its systemic risk contribution is 7 (7), which indicates that the effect of node

strength on the system risk contribution in the industry network is not consistent. The number

of industries whose betweenness centrality B has a significant negative (positive) effect on its

systemic risk contribution is 13 (1), suggesting that the larger an industry’s betweenness central-

ity in the network is, the smaller the ΔCoVaR, and the larger its systemic risk contribution. The

number of industries whose closeness centrality F has a significant negative (positive) effect on

its systemic risk contribution is 10 (3), suggesting that the larger the node’s closeness centrality

in the network is, the smaller the ΔCoVaR and the larger its systemic risk contribution is. The

number of industries whose clustering coefficient C has a significant negative (positive) effect

on its systemic risk contribution is 12 (4), indicating that the larger the node’s clustering coeffi-

cient in the network is, the larger its systemic risk contribution. The number of industries

whose occupation layer in the stock industry network has a significant negative (positive) effect

on its systemic risk contribution is 4 (10), which means that the larger the node’s occupation

layer in the network is, the larger the ΔCoVaR, and the smaller its systemic risk contribution.

If a node’s betweenness centrality is high, it will be more central to the network, considering

its intermediary influence in the network. Thus, the corresponding industry has a larger sys-

temic risk contribution. Generally, a larger closeness centrality is accompanied by a greater

linkage effect on other industries in the network, making it is easier to spread information

between them. Such industries have a greater impact on other industries and have larger sys-

temic risk contributions. A larger occupancy layer represents a greater distance from the cen-

ter industry index node and a weaker correlation between them. Thus, the corresponding

industry has a larger systemic risk contribution. The node clustering coefficient of the industry

reflects the edge density of its local network and the return correlation strength among indus-

tries in the local network. A large density and relevant intensity of local networks leads to

greater systemic risk contribution.

Further analysis

We verify the robustness of results by dividing the full time domain into two sub-periods of

similar length: 2007–2011 and 2012–2016. The panel data regression results of the two sub-

Table 3. Stationary test results.

CoVaR S B F l C lnAsset

ADF 267.38 150.18 1178.23 1162.05 1225.48 132.14 321.75

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

leverage ROA GDPgr CPIgr R Ex

ADF 212.38 56.69 56.50 136.54 56.69 274.46

(0.000) (0.009) (0.009) (0.000) (0.009) (0.000)

Note: S represents node strength. B represents betweenness centrality network center. F represents the closeness centrality of network. l represents node

occupancy layer of network, C represents cluster coefficient of network. lnAsset represents logarithm of asset. Leverage represents assets and liabilities.

ROA represents return on assets. GDPgr represents GDP growth rate. CPIgr represents CPI growth rate. R represents bank overnight lending rate. Ex

represents US dollar to RMB exchange rate.

https://doi.org/10.1371/journal.pone.0180382.t003
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periods are shown in Table 5. The sub-period results are similar to the overall sample regres-

sion results, and there are no significant changes.

Moreover, we use different network construction methods to verify the robustness of the

effect of network topology on systemic risk contribution. Both PMFG and MST are strongly

related to single-linkage cluster analysis, and they can account for the heterogeneity of similari-

ties, or influences, that are typically present at different correlation scales in complex systems.

PMFG method is similar to MST method, but it preserves more of the information in the

Table 4. Panel data model estimation results.

Industry S B F l C lnAsset leverage ROA Common factors

CRE 1.2183*** -0.0018*** -0.0209*** 0.1727*** -33.5335*** 0.4874*** -1.1255*** -0.7924*** Controlled

(20.28) (-7.38) (-10.32) (9.07) (-28.02) (8.99) (-15.68) (-2.84)

FBA -2.1005*** -0.0008* -0.1225*** 0.5526*** -22.3702*** 0.3185 1.5521 -25.6004*** Controlled

(-8.37) (-1.74) (-17.14) (7.83) (-5.63) (1.02) (1.63) (-15.33)

DAP 1.0075*** 0.0019*** -0.0205*** 0.0526 -34.9328*** 0.2552*** -1.6503*** -9.5159*** Controlled

(8.53) (4.01) (-4.56) (1.47) (-18.82) (7.28) (-5.12) (-8.98)

ITF 1.0394*** -0.0023*** -0.0531*** 0.3378*** -33.8434*** 0.4193*** -3.5190*** -13.1750*** Controlled

(7.65) (-6.43) (-17.23) (8.21) (-14.45) (3.84) (-11.81) (-15.55)

UTL -1.6424*** -0.0077*** -0.0434*** 0.2105*** 11.1274*** 0.5415*** 0.7533*** 2.1188*** Controlled

(-13.92) (-17.14) (-11.02) (4.65) (5.47) (11.55) (2.99) (3.21)

ITH -0.5741*** -0.0004 -0.0102*** 0.1206*** -5.8432*** 1.0958*** 1.6214*** -8.9734*** Controlled

(-5.34) (-1.43) (-2.84) (2.93) (-3.03) (22.18) (6.16) (-10.96)

CAG -0.3248** -0.0011** 0.0185*** -0.1266 -7.4566*** 0.7252*** -1.2572*** 0.6696 Controlled

(-2.25) (-2.17) (4.83) (-3.27) (-2.87) (7.34) (-7.51) (0.72)

RET 21.7598*** -0.0176** 0.0075** -0.0345 -44.0765*** 0.3774*** 0.4326*** 1.2426* Controlled

(15.96) (-3.36) (2.30) (-1.02) (-21.78) (7.43) (13.10) (1.73)

CTR -2.0452*** -0.0123*** 0.0093 -0.0224 17.4815*** 0.1915 -0.2286 1.0110 Controlled

(-8.74) (-3.34) (1.09) (-0.24) (4.13) (1.23) (-0.97) (1.01)

MEA -1.7265*** -0.0035*** -0.0067** 0.0539* 20.7619*** 0.4964*** -0.0562* 0.2846 Controlled

(-16.12) (-9.24) (-2.53) (1.95) (10.77) (14.94) (-1.67) (0.87)

CMA 0.8996*** -0.0018*** -0.0021 -0.0439* -24.1221*** -0.0078 2.3086 24.8012*** Controlled

(11.91) (-3.49) (-0.85) (-1.67) (-16.75) (-0.15) (1.42) (6.78)

ACP 1.6296*** -0.0021* -0.0293*** 0.2369*** -31.8844*** 1.1152*** 12.8004*** -26.3774*** Controlled

(7.58) (-1.97) (-4.60) (3.37) (-9.09) (16.21) (10.53) (-13.32)

DFI -0.9580*** -0.0075*** -0.0272*** 0.2665*** -1.5495 -0.5471*** -7.3234*** -3.5235** Controlled

(-7.41) (-4.72) (-6.94) (6.43) (-0.63) (-7.95) (-15.43) (-2.25)

PBT -0.0521 -0.0001 -0.0047 -0.1770*** -14.6253*** 0.7327*** 0.2619*** -0.8120 Controlled

(-0.39) (-0.21) (-1.32) (-4.83) (-6.27) (18.85) (9.71) (-1.40)

CBI 0.2217 -0.0007 0.0112*** -0.1933*** -20.5418*** -0.4899*** 0.1409** 1.5537* Controlled

(1.34) (-1.42) (2.99) (-5.07) (-7.79) (-12.37) (2.05) (1.73)

INS 0.1322 -0.0120*** 0.0008 0.1442 -13.6261*** 0.2181*** 0.5085** 6.3186*** Controlled

(1.08) (-7.62) (0.20) (2.87) (-6.14) (2.92) (2.08) (5.72)

ENG 1.1792*** -0.0118*** -0.0350*** 0.3006*** -29.1662*** -0.6475*** -13.3090*** 23.7214*** Controlled

(9.32) (-14.45) (-9.54) (8.38) (-13.66) (-11.20) (-9.99) (7.05)

Note: The estimation results of common factors are presented in Table in S2 Table. The figures in brackets are t statistics.

* represents significance at the 10% level.

** represents significance at the 5% level.

*** represents significance at the 1% level.

https://doi.org/10.1371/journal.pone.0180382.t004
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network. The network constructed using PMFG is much larger and more complicated with

respect to the number of edges and topology than the network constructed using MST, which

makes the extraction and analysis of effective information more difficult and complicated.

However, the MST and threshold models rely on rather complementary concepts, and their

properties can shed light on different aspects of a system. A threshold network is a network in

which the correlation influence values exceed a given threshold. MST networks are based on

hierarchical clustering and enable one to consider the heterogeneity of interactions by main-

taining hierarchical information, in order to retain information about elements of poorly

interacting groups, which could not be selected using a threshold method [44]. Hence, the

threshold method is used to conduct the robustness test. We introduce a dynamic threshold

QdðtÞ ¼ 2

NðN� 1Þ

XN

i¼1

XN

j¼iþ1

rij, and it’s changes are shown in Fig 5. Qd(t) takes the average over all

stocks in a single time step, and fluctuates synchronously with the cross-correlations ρij(t) [57].

Therefore, the dynamic threshold may suppress the large fluctuations induced by ρij(t) to cre-

ate a stable network structure. We consider the dynamic threshold of θ = Qd(t). The dynamic

network is filtered using the dynamic threshold method, and the network topology indicators

are calculated.

Since the network formed by the threshold method is a non-connected network, the node

occupancy layer cannot be calculated. We calculate the topological indicators mentioned

above in addition to the node occupancy layer, and the evolution of the topology structure of

the ENG is shown in Fig 6. The effect of network topology on the systemic risk contribution is

analyzed by using the SUR panel data model, and the regression results are shown in Table 6.

The numbers of industries whose corresponding node strength, betweenness centrality, close-

ness centrality and clustering coefficient in the financial network have significant negative

(positive) effects on its systemic risk contribution are 7 (8), 9 (2), 10 (4) and 11 (5), respectively.

The results do not significantly differ from the results of the MST method, so the main conclu-

sions of this paper are robust.

Conclusion

This paper investigates the effects of the network topology of a stock industry brings on the

systemic risk contribution of various industries. We choose the CSI 300 index and its two-tier

industry indices data, and use the dynamic time-varying t-copula and GARCH model to calcu-

late the CoVaR and ΔCoVaR of the CSI 300 two-tier industry indices. We find that the sys-

temic risk contribution of small-scale industries such as CRE, FBS, DAP, and ITF, are greater

than those of large-scale industries, such as CBI, INS and ENG. The stock industry index net-

work is constructed based on the DDCs between industry indices, and the network topology

Table 5. Regression results for two sub-periods.

S B F l C lnAsset

2007–2011 8(6) 6(3) 10(4) 3(11) 12(4) 0(12)

2012–2016 4(10) 9(1) 10(3) 4(5) 15(1) 12(2)

leverage ROA Gdpgr CPI r ex

2007–2011 6(7) 8(5) 2(14) 12(3) 6(4) 12(3)

2012–2016 7(5) 13(3) 4(7) 3(12) 0(12) 0(16)

Note: The numbers inside (outside) the parentheses represent the number of sectors in which the variable coefficient has a significantly negative (positive)

effect.

https://doi.org/10.1371/journal.pone.0180382.t005
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of the analysis node is observed using the MST method. Finally, SUR of the panel data is uti-

lized to analyze the relationship between the network topology and the systemic risk contribu-

tion. Due to existence of information spillover and industry associations, changes in the local

network structure of the stock industry often lead to changes in the systemic risk contribution

of that industry. Industry with larger betweenness centrality, closeness centrality, and cluster-

ing coefficient and smaller node occupancy tend to be associated with larger systemic risk con-

tributions. The more important the position of the industry in the network is, the stronger its

capacity of information dissemination, the closer the industry association between it and other

industries, and the stronger its risk spillover effect on other industries and the whole market.

The policy implications of this paper are reflected in the following aspects: First, there are

some industry nodes with large systemic risk contribution in the Chinese stock market. As a

consequence, regulators can identify specific industry nodes based on the systemic risk contri-

bution of each industry in the stock market network. Effective supervision can decrease the

potential for an industry’s risk and influence to spread in the network, in order to maintain the

stability and safety of the financial system. Second, regulators can use network topological

indicators such as betweenness centrality, closeness centrality, clustering coefficient, and node

Fig 5. The dynamic threshold of the CSI 300 two-tier industry index network.

https://doi.org/10.1371/journal.pone.0180382.g005

Fig 6. ENG’s dynamic evolution of node degree (a), node strength (b), betweenness centrality(c), and closeness centrality (d) in the threshold network.

https://doi.org/10.1371/journal.pone.0180382.g006
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occupancy layer, as basic indices to measure the relevance of industry indices to more effec-

tively assess the importance of the industry system.

Supporting information

S1 Table. Analyzed industries.

(DOC)

Table 6. Panel data model estimation results.

Industry S B F C lnAsset leverage ROA Common factors

CRE 1.1115*** -0.0063*** 0.0079 -30.9981*** 0.6768*** -1.2886*** -0.9692*** Controlled

(16.28) (-9.52) (1.26) (-25.36) (12.26) (-18.45) (-3.28)

FBA -1.2005*** -0.0031** -0.0949*** 11.6106*** 0.1996 0.7784 -27.6846*** Controlled

(-4.31) (-2.15) (-4.10) (-2.70) (-0.61) (-0.79) (-15.53)

DAP 1.0705*** 0.0004 -0.1262*** -37.2004*** 0.1723*** -0.3330 -10.6226*** Controlled

(8.63) (0.75) (-9.79) (-19.33) (4.89) (-1.06) (-9.70)

ITF 0.5106*** -0.0116*** -0.0990*** -26.6604*** 0.3878*** -2.9514*** -12.9331*** Controlled

(3.10) (-8.65) (-8.40) (-10.29) (3.40) (-9.93) (-14.93)

UTL -2.1301*** -0.0747*** -0.0353*** 21.2333*** 0.7512*** 1.2504*** 1.3065* Controlled

(-13.65) (-24.12) (-2.81) (8.85) (15.58) (4.91) (1.87)

ITH -0.6968*** -0.0021 -0.0251*** -2.9565 1.1472*** 1.0821*** -10.5853*** Controlled

(-5.57) (-1.60) (2.38) (-1.47) (23.28) (4.01) (-13.00)

CAG -1.3341 -0.0028 -0.0786** 5.2955** 0.7053*** -1.1254*** 2.2729* Controlled

(-8.55) (0.91) (-7.66) (2.05) (7.43) (-7.09) (2.45)

RET 1.7474*** -0.0160 0.0000 -44.5848*** 0.3422*** 0.2548* 1.4105* Controlled

(15.69) (-1.12) (0.01) (-22.01) (6.84) (1.83) (1.92)

CTR -2.6480*** -0.0042 0.0086** 26.8631*** 0.0787 -0.0378 -0.2469 Controlled

(-10.57) (0.14) (2.34) (6.06) (0.49) (-0.15) (0.25)

MEA -2.2292*** -0.0027*** -0.0118** 28.7194*** 0.5273*** 0.0143 -0.9736*** Controlled

(-20.48) (-2.96) (-3.08) (15.36) (15.64) (0.42) (-2.91)

CMA 0.5866*** 0.0033* -0.0140 -19.2708*** 0.0221 1.7952 19.1286 Controlled

(6.08) (1.90) (-3.08) (-11.81) (0.43) (1.21) (5.51)

ACP 1.8356*** -0.0117 -0.0435*** -35.2158*** 1.2123*** 3.0629*** -23.5085*** Controlled

(9.80) (-2.91) (-4.20) (-10.96) (17.65) (11.63) (-11.54)

DFI -0.6822 -0.0457*** -0.0333*** -4.3910* -0.3965*** -6.0922*** -6.3850 Controlled

(-4.83) (-3.32) (5.60) (-1.71) (-5.47) (-12.36) (-3.91)

PBT 0.0938 0.0136*** 0.0187* -15.7843*** 0.7821*** 0.3441*** -0.4256 Controlled

(0.63) (3.23) (1.86) (-6.47) (20.03) (12.74) (-0.73)

CBI 0.7878** -0.0158* 0.0015 -30.3793*** -0.4490*** 0.3329*** -0.1785 Controlled

(5.03) (-9.88) (0.11) (-11.56) (-11.37) (4.66) (-0.19)

INS -0.2352 -0.0324 -0.0267* -8.9017*** 0.2535*** 0.0422 6.1893*** Controlled

(-1.28) (0.84) (-1.88) (-3.14) (3.34) (0.17) (5.51)

ENG 0.02844** -0.0119*** -0.0398*** -15.2070*** -0.6966*** -18.6896*** 14.5459*** Controlled

(2.00) (-5.15) (-7.32) (-6.63) (-11.96) (-14.98) (4.27)

Note: The estimation results of common factors are presented in Table in S2 Table. The figures in brackets are t statistics.

* represents significance at the 10% level.

** represents significance at the 5% level.

*** represents significance at the 1% level.

https://doi.org/10.1371/journal.pone.0180382.t006
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15. Soramäki K, Bech ML, Arnold J, Glass RJ, Beyeler WE. The topology of interbank payment flows. Phy-

sica A. 2006; 379(1):317–333.

16. Allen F, Gale D. Financial Contagion. Journal of Political Economy. 2000; 108(1):1–33.

17. Lubloy A. Domino effect in the Hungarian interbank market. Hungarian Economic Review. 2005; 52

(4):377–401.

18. Cajueiro DO, Tabak BM. The role of banks in the Brazilian interbank market: Does bank type matter?.

Physica A. 2008; 387(27):6825–6836.

19. Iori G, Masi GD, Precup OV, Gabbi G, Caldarelli G. A network analysis of the Italian overnight money

market. Journal of Economic Dynamics & Control. 2008; 32(1):259–278.

20. Krause A, Giansante S. Interbank lending and the spread of bank failures: A network model of systemic

risk. Journal of Economic Behavior & Organization. 2012; 83(3):583–608.

21. Hautsch N, Schaumburg J, Schienle M. Financial network systemic risk contributions. Review of

Finance. 2015; 19:685–738.

22. Brunetti C, Harris JH, Mankad S, Michailidis G. Interconnectedness in the Interbank Market. Social Sci-

ence Electronic Publishing. 2015.

23. Kocheturov A, Batsyn M, Pardalos PM. Dynamics of cluster structures in a financial market network.

Physica A. 2014; 413(413):523–533.

24. Namaki A, Shirazi AH, Raei R, Jafari GR. Network analysis of a financial market based on genuine cor-

relation and threshold method. Physica A. 2011; 390(21–22):3835–3841.

25. Kazemilari M, Djauhari MA. Correlation network analysis for multi-dimensional data in stocks market.

Physica A. 2015; 429:62–75.

26. Chi KT, Liu J, Lau FCM, Baillie RT, Palm FC, Vermaelen TJ, et al. A network perspective of the stock

market. Journal of Empirical Finance. 2010; 17(4):659–667.

27. Heiberger RH. Stock network stability in times of crisis. Physica A. 2014; 393(1):376–381.

28. Qiao H, Xia Y, Li Y. Can Network Linkage Effects Determine Return? Evidence from Chinese Stock

Market. Plos One. 2016; 11(6):e0156784. https://doi.org/10.1371/journal.pone.0156784 PMID:

27257816

29. Huang WQ, Zhuang XT, Yao S, Uryasev S. A financial network perspective of financial institutions’ sys-

temic risk contributions. Physica A. 2016; 456:183–196.

30. Yang R, Li X, Zhang T. Analysis of linkage effects among industry sectors in China’s stock market

before and after the financial crisis. Physica A. 2014; 411:12–20.

31. Tabak BM, Serra TR, Cajueiro DO. Topological properties of stock market networks: The case of Brazil.

Physica A. 2010; 389(16):3240–3249.

32. Uechi L, Akutsu T, Stanley HE, Marcus AJ, Kenett DY. Sector dominance ratio analysis of financial mar-

kets. Physica A. 2015; 421(421):488–509.

33. Raddant M, Kenett DY. Interconnectedness in the global financial market. Office of Financial Research

Working Paper. 2016; 16(06).

34. Junior L, Mullokandov A, Kenett D. Dependency relations among international stock market indices.

Journal of Risk & Financial Management. 2015; 8(2):227–265.

35. Fleming J, Kirby C, Ostdiek B. Information and volatility linkages in the stock, bond, and money markets.

Journal of Financial Economics. 1998; 49(1):111–137.

36. Boginski V, Butenko S, Pardalos P M. Mining market data: A network approach. Computers & Opera-

tions Research. 2006; 33(11):3171–3184.

37. Nobi A, Maeng SE, Ha GG, Lee JW. Effects of global financial crisis on network structure in a local

stock market. Physica A. 2014; 407(C):135–143.

38. Kantar E, Keskin M, Deviren B. Analysis of the effects of the global financial crisis on the Turkish econ-

omy, using hierarchical methods. Physica A. 2012; 391(391):2342–2352.

39. Sienkiewicz A, Gubiec T, Kutner R, Struzik ZR. Dynamic structural and topological phase transitions on

the Warsaw Stock Exchange: A phenomenological approach. Acta Physica Polonica. 2013; 123

(3):615–620.

Does network topology influence systemic risk contribution?

PLOS ONE | https://doi.org/10.1371/journal.pone.0180382 July 6, 2017 18 / 19

https://doi.org/10.1371/journal.pone.0156784
http://www.ncbi.nlm.nih.gov/pubmed/27257816
https://doi.org/10.1371/journal.pone.0180382


www.manaraa.com
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